2018年5月30日水曜日

癌の各国別5生率

癌の各国別5生率というものがランセットに発表されていた。3月のことのようだ。毎日新聞の記事を引用させていただく。

毎日新聞2018年3月5日 東京朝刊より引用
















各国のこの差はいかなる理由によって生まれるのか・・・これを臨床腫瘍学認定医(そんなものがあるのかどうか知らないが?)試験の筆記問題にすると面白いと思う。

人種差・・・・・・・・新聞レベルならまずこれだろう。
サブタイプの違い・・・胃がんはそうであろう。
医療水準の差・・・・・これは微妙ではないか?

なおここでは発見される腫瘍の臨床病期が違う、臨床病期の割合が違う・・・という「いつものあの議論」はしない。

結腸と乳房の5生率が6カ国でほぼ同じであることに注目したいということにとどめたい。

これはこの6カ国の医療水準がほぼ同等であることを意味するのか?
あるいは医療水準に関わりなく(発見が早かろうが遅かろうが、手術が精緻であろうが精緻でなかろうが、術後補助療法をやろうが、やるまいが)こんなものなのか考えてみたい。疫学の妙味である。

20年前は「日本人の乳がんは性質が良い」と言われていた。同じ臨床病期であっても他国に比べ予後が良いと喧伝されていた。2018年現在では「日本人の乳がんは性質が良い」とは全く言えなくなった(だって上記6カ国の生存率は90%で事実上等しい)

これが何を意味するか?他国の臨床水準が上がった?日本の乳がんの性質が変化した?他国の乳がんと日本の乳がんが生物学的に似てきた?

20年前の他国の乳がん5生率を調べてみたいと思う。この20年間で日本の乳がん5生率はどれくらい変化したのだろう?

乳がんは2018年には年間8万人みつかることになるという。あっというまに3倍以上に増えているはずだ。その殆どは「早期乳がん」であるが、5年生存率は上がらない。韓国の「甲状腺がん」のようにならないようにしてもらいたい。(韓国は国を挙げて甲状腺がん早期発見プロジェクトを行ったが、予後の向上につながらないため2013年にプロジェクトを中止した)

結腸がんはどうであろう?
各国ほとんど横一線65%前後というのが興味深い。これって何を意味するのであろう?人種差があるのだろうと思っていたよワタシ。左側と右側の違い。修復遺伝子異常の違い。言われるほどはないんだろうな。

胃の違いはこれはピロリ感染胃がんの違いであろう。日本韓国は胃がん絶対数が多い。早期胃癌で発見治療される割合が高いのでその部分が5生率を上げている。他国は胃がんが少ないことがこの歴然とした差の原因だ。

食道がんは医療進歩の総合的成果が現れているはずだ。手術手技の向上、麻酔の向上、手術器具、胸腔鏡・腹腔鏡、栄養、術後化学放射線療法。しかし最も貢献しているのはおそらく他国にはみられない日本における上部内視鏡試行数の多さであろう。早期食道癌の発見と内視鏡的治療。36%という日本の数字(これは驚異的進歩である)の一定の部分は内視鏡によるものだろうと思う。

肺がんの違いはなんだろう?これはよく言う、アジア、女性、遺伝子異常・・・人種差なのか?ここまで効いてくるのであろうか?

さて小生がもっとも気になったのが白血病である。この日本人の成績の悪さは何なのだ?他のがんとの比較というコンテクストで誰か納得のいく説明をしてくれないものか?日本がここまで悪いとは思わなかった。

2018年5月27日日曜日

nadege 20年ぶりに新譜

ぼくが90年代から世紀をまたいだ頃一番良く聞いたのが「nadege」でした。おフランスの女性ユニット。ここに載せられている11枚のdiscographyのうち9枚持っている。


そのナデージュがほぼ20年ぶりに新譜を出すというニュースが届きました。正直過去の人なのでどうでも良いのですが、というか、実はあまり聴きたくない。ナデージュ20年前を上回っているとはとても思えないし、売り方があざとい。2800円もするのに新曲2曲+旧譜2曲であり限定300枚だという。2018年初夏に発売ですって。

http://nadege-music.net 



これは「冗談」としか思えない。日本全国に小生のような変人(2018年にナデージュ新譜のニュースを受け取る変人、興奮する変人)が最大で300人はいるのではないかという見積もりです。よく企画が通ったもんだ。

ナデージュは謎のフレンチ・ユニットであり、写真の一枚も動画の一本も出回っていない。ですから、ぼくはこんなに好きだったのに顔を一回も見たことがないのです。その存在自体極めて怪しいユニットであり、当時も今も正体が全く不明であり、フランス人ユニットというのはfakeで実は「日本人説」も出回っていた。ネット上で全く盛り上がらないユニットだったので情報がほとんどなく(今も)、そういう意味で20年ぶりに新譜といわれても、だれも知らないよ(おそらく)。

といっても当時でも地方のCD屋さんであっても、いつも複数のCDが売られていた(上手に探せば・・・だけどね)。そんなユニットです。


系列でいうと「house」というジャンルのようですが、たまたま紛れ込んだ小生は「house」のその他を知らないので、よくわからないというのが本音です。

小生フランス女性ものはとにかく好きでフランソワ・アルディや、もちろんエディット・ピアフジュリエット・グレコなんぞも好きであり、更にバルバラは大好きでした。バルバラに至っては亡くしたレコード盤を今も時々ネットで探すが見つからないくらい。

90年初期は初代クレモンティーヌにハマり(今のクレモンティーヌは別の人だと思っています(笑))、その次にハマったのがnadegeでした。

聴きたくないといったものの、買うんだろうな。ああ。

以下好きな人達

フランソワ・アルディの「さよならを教えて」


グレコの「パリの空の下」


バルバラ

クレモンティーヌの「Afternoon in Paris」


そしてナデージュの「黒いオルフェ」




2018年5月14日月曜日

NEJMのイメージから:手掌線状黄色腫

手掌線状黄色腫

コレステロールが高いといろいろなところに沈着する。

私の知っている限りでは アキレス腱、眼瞼、消化管では胃カメラでよく黄色腫を見ます。 

今回ドイツから報告のこの手掌はちょっと特徴的である。この方痛みで栓が開けられなかったり大変だ。 原因は少し特殊な病態のようで治療はフェレーシスなのだとか。

 今回初診から10年目の報告であり、いまでも隔週のフェレーシスをやっているらしい。 手掌の黄色腫は消失し症状も軽快しているとのこと。














IMAGES IN CLINICAL MEDICINE

  • Viktoria F. Koehler, M.D., 
  • and Klaus G. Parhofer, M.D.
  • A 49-year-old man was referred to the metabolic clinic for evaluation of severe hypercholesterolemia and xanthomas, which were particularly prominent on the hands. The lesions were painful and affected the patient’s everyday life, making it difficult for him to open bottles or shake hands. He had a 2-year history of biliary cirrhosis due to ischemic cholangiopathy. Laboratory evaluations showed a total cholesterol level of 970 mg per deciliter (25.1 mmol per liter); a triglyceride level of 158 mg per deciliter (1.8 mmol per liter); a low-density lipoprotein (LDL) cholesterol level of 875 mg per deciliter (22.6 mmol per liter), with presence of lipoprotein-X; and a high-density lipoprotein cholesterol level of 64 mg per deciliter (1.7 mmol per liter). Treatment with LDL apheresis was started. Palmar xanthomas can also be seen in patients with type III hyperlipoproteinemia (familial dysbetalipoproteinemia). Xanthomas are rarely so severe that they interfere with activities of daily life. Within 3 months after the initiation of weekly LDL apheresis, the lesions had almost disappeared and the patient reported substantial relief from pain and improvement in function. At follow-up 10 years after presentation, the patient was in stable condition and was undergoing LDL apheresis every other week. Since the initiation of LDL apheresis, his LDL cholesterol level had decreased to 110 mg per deciliter (2.8 mmol per liter).

    Viktoria F. Koehler, M.D.
    Klaus G. Parhofer, M.D.
    Klinikum der Universität München, Munich, Germany 

2018年5月10日木曜日

John Sulstonの訃報を耳にして・・

今のゲノムプロジェクトの先鞭をつけたのは大腸菌であり酵母であるが、それよりやや時代が下って機能と遺伝子ゲノムの嚆矢といえばやはり線虫であろう。シドニー・ブレンナーが大腸菌をやめて次は線虫だと言い出し、このプロジェクトの中核を担ったのがサルストン、クールソンとホロビッツであった。

雌雄同体(hermaphrodite) で959個、雄(male) で1031個の体細胞の細胞が成体の線虫を構成するが、受精から二分割→4分割とその生涯の細胞系譜を追っていき959個に至るまでの系譜を完成し、逆に成体の腸のこの細胞の先祖はこの時期には「これ」、32細胞期には「これ」と先祖返りも可能にしたのがかれらの最初の功績であり、ついでレーザーを使いある時期にある細胞を潰すとその後の成体がどうなるのか、あるいは成体での突然変異体の細胞系譜とゲノム遺伝子の関連等々を体系的に調べ、ヒトのゲノム・プロジェクトに先立つこと20年前にこのような仕事をしていたのだから先駆的である。


ちなみにブレンナーの線虫突然変異体の論文は1974年である。ブレンナーの線虫プロジェクトの最初のスタッフがジョン・サルストンであるが、サルストンの細胞系譜の最初の頃の仕事はノマルスキー微分干渉顕微鏡を使い細胞を目で追うことで始まった。そこにホロビッツが加わりかれらは最初の959個の細胞系譜を完成させた。その後線虫のゲノムプロジェクトの中核も彼らは担い続けた。


小生が1992年ころ勤めていた施設にホロビッツが来ることになって、ボクは駅までホロビッツを迎えに行った。昔のことだらからボール紙に「ようこそホロビッツ様」と書いた紙を胸の前に掲げ、彼の到着を待った。繊細なヒトであり、連れていったホテルで「羊毛アレルギー」だということで寝具一式を代えさせるひと波乱があったことを昨日のように思い出す。ホロビッツはこのころ線虫変異体とその責任遺伝子の発見でnature, cellで華々しく活躍していたので、小生もこの線虫プロジェクトのことをこのころ勉強したのである。ホロビッツのと数日はとても楽しい思い出であった。

その後自分はヒトのゲノムプロジェクトに関わることをやったが、そのきっかけはどう考えてもこのときのホロビッツとの出会いであった。


テルモ生命科学芸術財団のHPより引用

2002年にブレンナー、サルストン、ホロビッツはノーベル賞を受賞するが 、この時くらいノーベル賞を誇りに思ったことはなかった。三人とも(論文でであるが)知っていた。ホロビッツとは語り合った思い出がある。このお三方はその後のゲノムプロジェクトでも中核的な働きを続けていたので、むしろ小生はゲノムプロジェクトのころのほうが恩恵・薫陶を受けていたのかもしれない。

サンガーセンターのセンター長であったが、小生にとっては「細胞系譜のサルストン」が亡くなったとの訃報である。ご冥福を祈りたい。「Cell」誌に追悼記事が載っていたので(掟破りかも知れないが)全文転記させてもらった。

Cell
Volume 173, Issue 4, p809–812, 3 May 2018
OBITUARY

John Sulston (1942–2018)


John Sulston, who died on March 6, 2018, was the first speaker at the fifth International C. elegans Meeting in 1985. In his talk, John described the progress he and Alan Coulson had made toward determining the physical map of the C. elegans genome. This mapping project was very new and quite different from John’s previous work describing the complete C. elegans cell lineage. Before giving his status report, John explained why he had undertaken this new project, “I want to admit to a weakness, perhaps several. I have a weakness for grandiose, meaningless projects.” John then described his real goals: (a) to promote communication among C. elegans labs, (b) to make flanking clones of genomic DNA available to speed the molecular analysis of genes, and (c) to complete and fully connect the physical and genetic maps. Unsaid during his talk, but to my mind one of the key aspects of the success of the project, was that John was not pursuing any other studies in C. elegans; he devoted all his efforts to the mapping of the genome as both a worthwhile and meaningful endeavor and as a service to the community. These goals and his actions exemplify John’s career, which was characterized by great vision, tremendous accomplishments, and an intense belief in sharing, openness, and the development of community in science.
John is best known for three remarkable accomplishments: elucidating the complete cell lineage of C. elegans, determining the sequence of the C. elegans genome, and guiding the public effort to sequence the human genome. Those of us who worked with him and benefited from his companionship and insight also knew him to be an extraordinary person with an amazing grasp of science, a knack for designing and executing astonishing experiments, and an exceptionally strong moral concern that science be done to benefit everyone. More privately, he was a devoted and loving husband to his wife, Daphne, and father to his children, Ingrid and Adrian. For me, he was a role model not only of how to do science but also of how to be a scientist.
I first met John in 1977 at the first C. elegans Meeting at the Marine Biology Lab in Woods Hole, Massachusetts, just before I went to Cambridge for my postdoc. As I drove to the meeting, Bob Horvitz, who with John had just published the description of the postembryonic somatic lineage, suggested I talk with John about a collection of touch-insensitive mutants he had obtained and was no longer studying. John came to the meeting knowing that he was supposed to give a poster, but he decided instead to tape his slides to a window. Despite having to squint to see what was on the tiny images, I was fascinated and have worked on these mutants for the last 41 years. I am grateful and indebted to John for sharing this wonderful project, for really starting my research career.
John and Georgina Ferry described his early life, his C. elegans career, and his genome work in The Common Thread. He attributed his interest in science to a fascination with Meccano building sets and electricity, but I remember him saying that he really liked making explosives with his chemistry set. This interest in chemistry led to undergraduate and graduate degrees in chemistry at the University of Cambridge. After postdoctoral research with Leslie Orgel at the Salk Institute, John returned to Cambridge in 1969 to study C. elegansbiology in Sydney Brenner’s group at the MRC Laboratory of Molecular Biology. John’s first accomplishment, and one that continues to be of immense use to the worm community, was the development of a freezing method to store and recover worms for later use. John’s first C. elegans paper, published back-to-back with Sydney’s classic study of C. elegans genetics in 1974, was on the DNA of C. elegans, a topic on which he was destined to devote a great deal of time. Before the genome work, however, came a series of very important papers: the first study of neurotransmitters in C. elegans, the discovery of those touch-insensitive mutants, the elucidation of the cell lineage of both the hermaphrodite and male C. elegans, the analysis of mutants with defective cell lineages, the first study of the regulation of cell fate by cell-cell interactions, and the identification of the first gene affecting programmed cell death.
John’s early study of dopamine in C. elegans neurons led to the touch sensitivity research, which I later inherited, and to the analysis of the cell lineage. John identified dopaminergic cells by their formaldehyde-induced fluorescence in fixed animals and used this method to isolate mutants that failed to make dopamine. His joy at finding the first of these mutants was short lived, however, when he realized that he had already thrown out the parent plates (with the living animals needed to propagate the strains). Fortunately, he was able to retrieve the plates from the dumpster before they were incinerated. This mutagenesis was laborious, so John, noticing that cells that appeared to be mechanosensors contained dopamine, screened for mutants that were insensitive to the touch of an eyebrow hair glued to a toothpick. He found several of these mutants, but they had normal dopamine cells. A different set of neurons was affected, as I saw in those slides taped to the window at the first Worm Meeting.
The dopamine study also began John’s interest in the cell lineages. The wisdom in the field said that nematodes did not add somatic cells after hatching; they just got bigger. John, however, found that older animals had more dopaminergic neurons and more ventral nerve cord neurons than younger animals. His first lineage experiments revealed how those additional ventral cord neurons arose in the young larva. He also found that some of the newly generated postembryonic cells died soon after they appeared, providing the first description of programmed cell death in the animal.
John was an amazing experimentalist. He had the uncanny ability to simplify tasks that required both patience and intense concentration, so they seemed obvious and almost easy (for him). Early in his lineage work, he devised a simple method of mounting animals on agar pads that were topped with a coverslip with a bacterial smear so the worms could eat, move, and develop normally while he watched them grow. The entire slide could be put into the refrigerator overnight, so John could continue his observations the next morning. He documented the cell divisions in an equally simple but exceptionally clear way: cells were drawn according to a rainbow scheme depending on their location.
The embryonic lineage, however, presented new problems, principally because the embryos often flipped in the eggshell, obscuring cells that had previously been easy to see; the cells were difficult to pinpoint, and the older embryo folded into a 3-fold knot. John solved the flipping problem by inventing a reversible slide that he could turn over whenever the embryo did, and he kept track of cells by placing spider web cross hairs in his eyepieces (a trick he knew World War II bombardiers used). How he solved the 3-fold knot problem is still a mystery to me, but John did have an excellent spatial sense.
After making these improvements, John locked himself away, examined lineages four days a week (the fifth day was used for record keeping and analysis), and finished the description of the embryonic lineage in a year and a half. This work required his utmost attention. Any interruption (some, I admit, I caused) ruined the observation. John worked so diligently on the lineage that the rocking of his chair as he worked gouged a hole in the floor of his room and into the underlying concrete. (After John moved to the Sanger Center, Bob Goldstein, a postdoc in the lab, made a plaster replica of the hole, which he presented to John without comment; John took one look and said, “I know that hole.”)
Having followed the lineage of some larval cells, I knew how difficult the work was, especially since dividing cells cause a moment of panic because they are temporarily impossible to see. In comparison, the work that John was doing following cell divisions in a constantly turning and folded embryo seemed impossible to me, yet John appeared to cope easily (although he did like quiet when he was working). He further amazed me when he emerged one day from his room elated, not because he had resolved another part of the lineage but because he had solved Rubik’s Cube while working on the lineage.
John also had a terrific talent for explaining complicated ideas. I soon realized that John’s explanations always seemed to use ideas I should have learned from my introductory college courses in physics, chemistry, and biology. John, however, had obviously paid attention in those courses and had thought deeply and thoroughly about the concepts; they were integral to how he understood the world.
Most of what I learned from John, however, had nothing to do with my experiments; it was about being a scientist and a fellow human being. He thought deeply about the consequences of science and his role as a scientist. I was particularly taken by John’s fairness and lack of possessiveness when he, Bob Horvitz, and I were writing a paper in 1981 about mutant cell lineages that repeatedly made the same cells. John suggested that the extra cells had the potential to evolve to give new functions just as gene duplications could eventually lead to new gene activities. I really liked this idea, and we put it into the manuscript. Several days later, however, I found a paper that had the same speculation and felt bad when I went to show it to John. Instead of being upset that someone had beaten him to the idea, he was glad I found the paper and simply said that it must have been the source of his thought.
John was also extremely patient with me. One day, I was so excited about a result that I immediately told John about it. Unfortunately, the great result did not repeat, and I went back to John quite embarrassed and apologized for getting so excited prematurely. He wasn’t bothered and just said, “Don’t worry. I don’t believe anything you tell me until I’ve heard it three times.” I later learned that he was probably referring to the beginning of The Hunting of the Snark by Lewis Carroll, where the Bellman says, “Just the place for a Snark! I’ve said it thrice:/What I tell you three times is true.”
John’s experimental skills and ethical standards really came to the fore during his genome work. When he and Alan Coulson began studying the C. elegans genome, the standard way of characterizing DNA sequences was to make restriction maps, a process that involved many separate reactions. They, along with Sydney and Jon Karn, however, devised a relatively simple method that could characterize or “fingerprint” a DNA sequence uniquely after running the products of a series of reactions all done in a single tube in a single lane on a high-resolution acrylamide gel. This procedure not only simplified the characterization but dramatically reduced the time involved because hundreds of samples could be examined in parallel. By finding matching band sizes, they could discover overlapping clones forming what they called a contig.
The C. elegans genome project revolutionized C. elegans work. As the set of contigs increased, John and Alan offered to fingerprint clones for genetically mapped genes sent to them by anyone in the C. elegans community. These new clones were often placed within existing contigs, allowing researchers to work faster and John and Alan to connect the genetic and physical maps. As these connections grew, more people were helped because they could place genetically mapped genes into defined places in the physical map and test whether DNA in the region rescued the mutant phenotype. Many collaborations formed from this free flow of information into and out of Cambridge as members of one lab realized they were cloning genes that another lab was studying genetically. As John said at the 1985 Worm Meeting, this community building, which he called “genomic communication,” was one of the main goals of the project.
John and Alan were joined by Bob Waterston, who introduced the use of yeast artificial chromosomes to connect the contigs, and two sites, one in Cambridge and subsequently in Hinxton (the Sanger Centre, now the Sanger Institute) led by John and a second at Washington University in St. Louis led by Bob, were established. As the contigs came together, Bob and John were eager to begin sequencing the C. elegans genome. They reasoned that with the largest characterized physical map, C. elegans provided the best test case for the upcoming human genome project. They received funding for a pilot project to see whether large scale sequencing was feasible.
John realized that this pilot stage and subsequent sequencing needed a larger, more efficient enterprise that was more like a modified assembly line with each person contributing to a specific step than a standard laboratory. One particular need in this enlarged effort was for people who could accurately input sequence data. John found these people in a unique but characteristic way: he went to the local supermarket, noted which cashiers were the quickest and most accurate, and asked them if they would like to use their skills in a scientific enterprise. Knowing John, I suspect he also paid them more money. The successful completion of this initial phase led to funding to finish the sequence, which was published in 1998, making C. elegans the first animal to have its entire genome sequenced.
The success of the C. elegans pilot phase also convinced John and Bob that the human-sequencing project should begin, even though others thought that the project was premature. Their enthusiasm and expertise soon initiated the public effort to sequence the human genome. At this time (1992), John and Bob were tempted to join a private sequencing effort because it would provide sufficient funding to complete the project, something that funding agencies were balking at. In considering this offer, John and Bob insisted (as they would for the public effort) that the C. elegans genome had to be completed and that all the human sequence data had to be publicly released daily. This flirtation with private funding was short-lived, in part, John confided to me, because one of the members of the proposed scientific advisory board was so disruptive that John considered him to be a dominant negative for the entire project (it was the first time I had heard this genetic term used to describe someone, but it was very appropriate).
The subsequent public effort by the International Human Genome Consortium flourished under John, Bob, and Eric Lander’s leadership of the three major sequencing centers, and a first analysis of the draft sequence of the human genome (all of which had been made available online) was published in 2001. Rather than stop with the draft sequence, the public effort refined the sequence over the next three years. The sequencing of the human genome stands out as one of the monumental achievements of 20th-century science. Our world has been permanently altered by what they learned.
To the lay public, however, the most interesting aspect of the Human Genome Project was the apparent rivalry between the public effort and the private effort mounted by the biotech company Celera. John’s perspective on these two efforts appear in The Common Thread (I particular enjoy his description of a press release that said nothing technically wrong, but which was entirely misleading) and in two commentaries he wrote with Bob Waterston and Eric Lander.
John garnered multiple honors for his work: he became a Fellow of the Royal Society, was knighted and later made a Companion of Honor, and received several scientific awards and prizes, including the 2002 Nobel Prize in Medicine or Physiology, which he shared with Sydney Brenner and Bob Horvitz. One of the more unusual honors, Mark Quinn’s portrait of John, consisting of bacterial colonies carrying his DNA, is now found in London’s National Portrait Gallery in London. A more dubious distinction occurred inugust of 2005. In an article entitled “Evangelical Scientists Refute Gravity with New ‘Intelligent Falling Theory,” The Onion featured a picture of John claiming he was Rev. Gabriel Burdett from the Evangelical Center for Faith-Based Reasoning. I suppose they used his picture because they thought with his white beard and white hair, he looked almost biblical (ironic for someone who did not believe in religion). And John continues to make his mark on popular culture; in the recently released science fiction film Annihilation, a student runs up to her biology professor (Natalie Portman) and says, “I read the John Sulston paper last night.”
John accepted honors not because he cared about the praise but because he wanted to use their cachet for a new career following the Nobel Prize. Specifically, John became a spokesperson for the open and free use of scientific information and for human rights more generally. He became the Chair of the Institute for Science, Ethics, and Innovation at the University of Manchester; served on the Human Genetics Commission in the United Kingdom, the Committee on Freedom in the Conduct of Science of the International Council for Science, and the Israeli-Palestinian Science Organization; and was an important advocate urging the Royal Society to join the International Human Rights Network of Academies and Scholarly Societies. In his new role as a public humanist, he wrote about the fair and open use of genetic sequence information, genetic equity, the danger of patents on biological information and on organisms with synthesized genomes, and the role of science in promoting global development.
I have tried in this brief overview of John Sulston’s life to give not only a summary of his astonishing scientific contributions but also a glimpse of why those of us who knew him viewed him as one of the most remarkable people we have ever known. I find this latter part the most difficult to express: how much we miss his joy of science, his sage counsel, and his exuberant pleasure in life. Lately, I have been reminded about seeing him riding his old bicycle to and from the lab, sharing a pint with him at the Frank Lee or the Green Man in Grantchester (he often bought the first round), and learning that when he discovered that Freestones Bakery, makers of a loaf of bread called a cobber that was so good you bought two because you knew you would finish one by the time you got home, was going out of business, he bought out the store and stashed the loaves in his freezer. And I miss his smile. When he was happy, which was often, he beamed.






Acknowledgments

No single person can adequately summarize another’s life, so I am grateful to the many friends who commented on the manuscript and shared their stories with me: Donna Albertson, Carol Corillon, Alan Coulson, Bob Goldstein, Jonathan Hodgkin, Bob Horvitz, Patty Kuwabara, Jim Priess, Bob Waterston, and John White.

2018年5月8日火曜日

帯状疱疹にだまされた2例

ボクが外来をやっていて「しまった!」と思うことは滅多にないが、それでも時に同じ失策を繰り返す。反省を込めて掲載する。

先週の月曜日に外来にきた56歳男子の主訴は右側腹部痛であった。過去歴に右尿管結石があること、大酒家であり軽度の肝機能障害があることが背景だ。エコーでみるとかなりの脂肪肝がある。右腎結石があるが腎盂拡張はない。CTでは右尿管の最後(膀胱への入口部直前)に石灰化(石?)があるが尿管拡張はない。検尿では潜血は(±)である。「尿管結石」であったのだろうが、なんかすっきりしない。現に今も痛がっている。検査結果と現症がやや乖離気味なのだ。ロキソニンを渡して様子見で帰宅された。

その56歳男子が昨日再度来院した。痛みが尋常でない、夜も寝られなくなった。ビリビリ、バリバリする。そして「昨日からこんなものが出てきた。」と上着をまくろうとする。

小生の内心「えっ、帯状疱疹なの!!」とまくれる前からおののいている。

そうなのだ。そこには一週間前にはなかった新鮮な疱疹の集簇が二箇所認められる。

思わず「帯状疱疹だったんですね」とつぶやいてしまうワタシ。

痛みの出現から9日目にやっとでてきた疱疹。

腹痛、尿閉、心筋梗塞・・・なんにでも絡んでくる帯状疱疹。わかってはいるけれど、まれに見逃すんだよね。10年で二例目ですかな(見逃しがはっきりと意識できる症例としては・・だ)
この間150例以上を帯状疱疹で入院させているから二例はやはり少ないのだが不徳のいたすところだ。甘いのだ判断が。あとから考えると痛みの性状がやはり違うのだ。

こんなのがあったよな〜、と過去掲載noteを検索すると2012年にあった。ありました。

2012年2月3日金曜日


帯状疱疹にだまされた一例。小生は帯状疱疹に縁が深いので、帯状疱疹を見落すことだけは避けたいと思っているが、2週間前のAさんには参った。臀部・大腿部痛があるため近くの整形外科に行き、通常の検査では整形外科的疾患ではないといわれ紹介受診した45歳女性患者である。来院時の主訴は右下腹部痛と臀部・大腿部痛であり、ちと不思議なことを言う。「おしっこをすると、恥骨の右側がひどく痛むのです」理学的所見に見るべきものはない。2日にわけていろいろ調べ、最終的にはCT まで撮ったが子宮筋腫以外異常ない。こまったなあ。その翌日外来に電話があった。「実は今日になってお尻の横に湿疹ができているのに気がついた。皮膚科に行ったところ典型的な帯状疱疹だったので、前のお医者さんたちに連絡しておいてくださいといわれた」という。
女性の臀部やその前方などなかなか診察するものではないのである、が、やはり診ておかなくてはいけないなあと思った次第である。この人その次の日わざわざ小生に
帯状疱疹診せに来てくれた。まぎれもないそれであった。いかんなあ。いかん、いかん。

腱鞘巨細胞腫:7年目の二例目

腱鞘巨細胞腫という病気がある。手指の軟部腫瘍の中では結構ポピュラーなようだ・・・・・

という投稿をして7年目。昨日久しぶりに当該病変(まず間違いなかろう)の初診患者がやってきた。

76歳男子。10年以上左の母指根部の皮下腫瘤を気づいていた。近医整形では「様子を見ましょう」と言われたが病名をはじめ詳細は聞いてない。

ここ2〜3年増大傾向にあり皮膚の「ピリピリ」としたしびれが出現したので来院した。

下記はその理学所見である。
ーーーーーーーーーーーーーーーーーーーーーーーー
左5指根部掌側やや外側に弾性硬の皮下腫瘤(15mm x 10mm)を認める。表面は平滑であるが、すぐ直下の腱と固着しておりこの屈筋腱が巻き込まれているために腱の短小化(掌側に腱が飛び出して緊張している)を認め、手掌の屈伸運動とともに皮下腫瘤は若干の移動をする。皮膚変化を認めないが、場所により軽度の圧痛を認める。 

X線では同部の皮下に内部の粗密な極めて淡い高密度陰影を認める。骨変化(浸潤や菲薄化や圧潰像)を認めない。
ーーーーーーーーーーーーーーーーーーーーーーーー


最終的には病理の結果ということになるが、まあ「Giant Cell Tumor of Tendon Sheath」で間違いなかろう。「しびれ」が気になるので(当院ではMRIを撮らずに)指の専門整形に紹介した。

記憶力に自信のない小生であるが、この病気を思い出したのはやはりブログにnoteしていたからだ。手や指の腫瘤(腫瘍)でもっとも多いのはガングリオンだが、二番目は「腱鞘巨細胞腫」と書いてある総説は多い。









★★★★★★★★★★★★

2011年1月13日木曜日


腱鞘巨細胞腫:手関節掌側皮下腫瘍の病理

腱鞘巨細胞腫という病気がある。手指の軟部腫瘍の中では結構ポピュラーなようだ・・・・・
★★★★★★★★★★★★

今回の皮下腫瘍が、ここまで大きいと自分で切除する気はおこらないが、もう少し小さいと手を出していたかもしれない。その場合かなりの確率で再発させることになったかもしれぬ。それは怖い。でもだからといって消極的にはなれない。小手術が好きな小生はいろんなものをこれまで切ってきた。それゆえ手を出してはいけないものを知るためには永遠に勉強を続けなくてはいけないのだろうな。